Synthesis of Partially Saturated N-Substituted 4*H*-3,1-Benzothiazine-2(1*H*)-thiones

Pál Perjési^{1,*} and Pál Sohár²

¹ Department of Chemistry, University Medical School, H-7601 Pécs, Hungary

² Spectroscopic Department, EGIS Pharmaceuticals, H-1475 Budapest, Hungary

Summary. Acid-catalyzed reaction of 2-arylidenecyclohexanones 1 with N-substituted dithiocarbamic acids 2 gave open-chain addition products 3 and 4. Dehydration of 3 and 4 afforded only one of the three possible isomeric N-substituted 4H-3,1-benzothiazine-2(1H)-thiones 5 and 6.

Keywords. N-Substituted 4H-3,1-benzothiazine-2(1H)-thiones; Synthesis; ¹H- and ¹³C-spectroscopy.

Synthese von partiell gesättigten N-substituierten 4H-3,1-Benzothiazin-2-(1H)-thionen

Zusammenfassung. Die säurekatalysierte Reaktion von 2-Arylidencyclohexanonen 1 mit N-substituierten Dithiocarbaminsäure 2 ergab die offenkettigen Additionsprodukte 3 und 4. Die Dehydratation von 3 und 4 führte ausschließlich zu einem der drei möglichen N-substituierten 4H-3,1-Benzothiazin-2(1H)-thion-Isomeren 5 und 6.

Introduction

The chemistry and pharmacology of 3,1-benzothiazines have scarcely been investigated. The synthetic works were focused on preparation and simple transformation of the compounds. Transformation of 4-aryl-3,1-benzothiazine-2-thiones into 4,1benzothiazepine derivatives is one of the most important results of the latter studies [1]. As a result of the pharmacological investigations, a few 4-aryl-2-(thi)oxo-, and 4-aryl-2-amino-3,1-benzothiazine derivatives with CNS [2–4], analgesic [5, 6], and antimicrobial [7, 8] effects were reported.

Earlier, we have shown that reaction of dithiocarbamic acid with 2-arylidenecyclohexanones is a versatile route for synthesis of 4-aryl-4H-3,1-benzothiazine-2(1H)-thiones [9]. As a continuation of our earlier work, we report here the results obtained by treating 2-arylidenecyclohexanones 1 a-f with N-substituted dithiocarbamic acids 2 a and 2 b. In these reactions formation of partially saturated N-substituted 4H-3,1-benzothiazine-2(1H)-thiones was expected, which were considered to be the first representatives of N-substituted 3,1-benzothiazines.

^{*} Present address: Department of Medicinal Chemistry, BG-20, University of Washington, Seattle, WA 98195, U.S.A.

Results and Discussion

The reaction of 2-arylidenecyclohexanones 1 **a**–f with dithiocarbamic acids 2 **a** and 2 **b** was carried out in acidic aqueous acetone solutions at -5° C to yield the openchain addition products 3 **a**–f and 4 **a**–d (Scheme 1). The appearance of the v_(NH) and v_(C=O) signals in their IR spectra proved unambiguous evidence of the progress of the addition reactions as well as the open-chain structure of the products. The ¹H-NMR (60 MHz, *DMSO-d*₆) spectra were rather complex suggesting equilibrium between the open-chain and cyclic N,O-hemiketal structures [9] of the compounds.

In order to obtain the expected 3,1-benzothiazines we tried to apply the dehydration methods (Method A: p-TSA/Benzene; Method B: TFA/Benzene; Method C: $(C_2H_5)_2O - BF_3/CHCl_3$) used in our earlier work, which proved to be slightly selective in dehydration of the configurationally different cyclic dithiocarbamic acid adducts of 2-arylidenecyclohexanones [9]. These methods, however, failed, even if longer reaction times were used. Thus, compounds **3 a**-**f** and **4 a**-**d** were dehydrated in acetic anhydride using sulphuric acid as catalyst. ¹H-NMR (60 MHz, CDCl₃) analysis of the crude reaction products showed that dehydration of **3 a**-**f** and

Compound	$CH_2 (5, 6)$ $2 \times m (2 \times 2H)$	CH ₂ (7) m (2 H)	H-4a m (1 H)	H-4 d (1 H) ^b	NCH_2^c 2 × d/m (2×1H)	$H-8 \sim t (1 H)^d$	ArH (Pos. 4 + side chain) m's/d's (9/10 H) ^e
5a	~ 1.25, ~ 1.45	2.05	2.98 ^f	4.64	5.62,	5.86	5.77	7.2-7.5
5b	$\sim 1.4, \sim 1.5$	2.10	2.82	4.35	5.46,	5.99	5.66	$6.88^{\text{g}}, 7.2-7.4^{\text{h}}$
5c	$\sim 1.45, \sim 1.55$	2.10	2.85	4.35	5.46,	6.00	5.66	7.1-7.4
5 d	~ 1.3, ~ 1.5	2.08	3.00	4.71	5.60,	5.86	5.79	\sim 7.25 ^h , \sim 7.35 ^h , 7.46 ^g , 7.52 ^g
5e	$\sim 1.3, \sim 1.5$	2.05	3.02	4.62	5.58,	5.88	5.76	6.92^{i} , 7.02^{j} , $7.2-7.4^{h}$
5f	$\sim 1.35, \sim 1.5$	2.10	3.08	4.35	5.46,	5.95	5.68	7.2–7.4 ^h , 7.47 ^g
6a	1.15- 1.6	2.15	~ 2.6	4.52	$\sim 4.55, -$	~ 4.8	6.00	7.2–7.4
6b	1.2 - 1.6	2.15	2.55	4.45	$\sim 4.55, c$	~ 4.8	5.99	$6.93^{\mathrm{g}}, \sim 7.3^{\mathrm{h}}$
6c	1.1- 1.6	2.15	2.55	4.48	~ 4.4, ~	~ 4.8	6.04	\sim 7.2 ^h , \sim 7.3 ^h
6d	1.1 - 1.6	2.15	~ 2.6	4.57	$\sim 4.2, $	~ 4.8	6.02	$\sim 7.2 - 7.5$

^a Solvent $DMSO-d_6$ for 5a, d, f and 6a-d, $CDCl_3$ for 5b, c, e

^b J (H-4, H-4a): 11.7 \pm 0.2

^c AB-type spectrum (2 × d) for 5a-f, J (A, B): 16.0 \pm 0.2, AB-part (2 × m) of an ABXY-system for 6a-d

^d J: 4.0 ± 0.1

^c Total intensity 10 H (5 a, 6 a), 9 H (5 b-f, 6 b-d)

 $^{\rm f} \sim {\rm d} \ (J: \ 11.3)$

^g A or B part (intensity: 2H) of the AA'BB'-type multiplet of the *para*-disubstituted aromatic ring (Pos. 4), J (A, B): 8.8 (5b, 6b), ~ 9 (5d), 8.4 (5f)

^h Overlapping m's, intensity: 7 H (5 b, f, 6 b), 3 + 2 H (5 d), 6 H (5 e), 5 + 4 H (6 c)

ⁱ H-4 (4-aryl group), dd (1 H)

^j H-2, 6 (4-aryl group), overlapping d's (2 H)

C4°	C4	C – C°	C1	NCH, ^b	C-8a	C-8	C-6	C-5. 7	C-4a	$C-4^{b}$	C = S(2)	Compound
t (C-3°)	and 161.4	-2°), 122.2 (C-6°	at 115.9 (C-	urther ones a	and three f	given above	he interval	r 5e, three in t	ur ^c lines fo	o plus for	There are two	(5f, C-3, 5).
l given above $.7$ and 132.2°	the interval b) and 126	one line out of 5) and 126.7 (5	earance of 4.5° (C-3,	a) or of appe or 5b, f at 11	nd 130.0 (6) separated fo	130.5 (5a) a nd two are	vo lines at e interval a	of overlap of tware in the abov	It because of Two lines	and 6 a , 6 C-3, 5).	nes lor 5a, c 116.0° (6b ,	6 c, d , three II at 126.8 (5 c),
m for 5 d and given above	id 132.0 ppi the interval	etween 128.0 an one line out of	four lines b earance of	4r-2, 3, 5, 6: 1 a) or of appe	.0 (6 c, d); C ind 130.0 (6;	2 (6 a, b), 34 130.5 (5 a) a	chain): 34. vo lines at); <i>Ph</i> CH ₂ (side of two setups of the setup of the setu), 22.3 (6 c d because (, 54.9 (6b and 6a,	:), 56.9° (5 e), nes for 5 a, c	(5b), 21.1 (5c 6c, d, three lii
CH ₃ (X): 55.3	er signals: (53 MHz ^a . Furthe	n at 20 or (DCl ₃ solution	-d ₆ and/or C	d in DMSO	⊢f and 6a⊣	compounds 5 a	(g/ppm) of	al shifts (NMR chemic	Table 2. ¹³ C-1

Compound	C = S(2)	C-4 ^b	C-4 a	C-5, 7	C-6	C-8	C-8a	NCH ₂ ^b	C_{Ar} -1	$C_{Ar} - C^{\circ}$	C_{Ar} -4	C_{Ar} -4°
5 a	192.4	55.2	40.2	26.0, 27.4	19.6	118.8	140.1	56.9	138.0 ^b	138.1 ^b	128.5	129.9
5b	192.5	54.3	39.9	24.9, 26.2	18.6	117.0	139.4	56.4	136.5	128.2	127.1	159.7
5c	192.7	54.7	39.9	25.0, 26.4	18.7	116.9	139.6	56.4	133.5	136.6	127.2	138.4
5d	192.1	54.4	40.0	26.0, 27.4	19.5	119.0	139.9	56.9	137.3 ^b	137.9 ^b	128.6	134.0
5e	192.4	55.1	40.1	26.0, 27.5	19.6	118.7	140.2	56.9 ^d	138.0	139.7	128.5	115.4
5f	191.8	54.3	39.7	24.8, 26.3	18.6	117.3	139.0	56.4	135.7	136.3	127.2	122.4
6a	191.0	55.2	39.7	26.0, 26.9	19.2	119.0	140.3^{b}	55.4	138.5	139.9^{b}	128.0	129.8
6 b	191.3	55.2	39.9	26.0, 26.9	19.2	118.8	140.5	56.8	139.9	130.2	128.0	160.8
6c	191.0	55.2	39.5	25.9, 26.8	19.0	119.0	139.9 ^b	55.0	140.3	135.5	128.0	139.2 ^b
6d	190.6	55.1	39.6	25.8, 26.9	19.0	119.1	140.0	55.4	139.0	137.6	127.8	134.4

^a Solvent: $DMSO-d_6$ (5 a, d, e, and 6 a–d) or CDCl₃ (5 b, c, f, and 6 c, d), measuring frequency: 20.14 MHz (5 b, c, f) or 62.89 MHz (5 a, d, e, and 6 a–d) ^b Interchangeable assignments

° 4-aryl group ^d Two overlapping lines

4a-d furnished only one of the three possible 3,1-benzothiazine isomers 5a-f and 6a-d (Scheme 1) [10].

The ¹H- and ¹³C-NMR data of compounds 5a-f and 6a-d are given in Tables 1 and 2 and provide convincing evidence of the structures of the new products. The values (ca. 11.7 Hz) of J (H-4, H-4a) coupling constants prove [11] the 1,3diaxial arrangements of the hydrogens involved and consequently the *cis*-equatorial position of the 4-aryl group relative to the H-4a and the heteroring, respectively. Both 7-methylen hydrogens have couplings of the same magnitude to H-8 (the olefinic signal is a pseudo-triplet split by ca 4 Hz). All evidence suggests a preferred conformation for the flexible compounds, with the alicycle in half-chair form (where C-6 and C-7 have "up and down" position to the plane of C-4a, 7, 8, 8a atoms) and the hetero ring in a twisted-boat form (Fig. 1).

Experimental Part

Melting points were determined on a Boetius apparatus and are uncorrected. IR spectra were taken in KBr pellets with a Specord 75 IR spectrophotometer. ¹H-NMR spectra were recorded with a Perkin-Elmer R-12 equipment (60 MHz) or a Bruker WM-250 FT-spectrometer, using *TMS* as internal standard, at 35°C or 25°C, respectively. ¹³C-NMR measurements were carried out at 25°C on Bruker WM-250 or WP-80 SY FT-spectrometers, at 63 or 20 MHz, respectively, using *TMS* as internal standard. Elemental analyses were performed in-house and at the Central Research Laboratory, University Medical School, Pécs.

2-Arylidenecyclohexanones [12] and N-substituted dithiocarbamic acids [13] used as starting materials were synthesized by literature methods. The (*E*)-configuration of the unsaturated ketones was based on ¹H-NMR investigations [14].

The isomeric composition of the reaction products was examined by ¹H-NMR spectroscopy (60 MHz), based on investigation of the well separated H-4 signals. TLC was performed on Kieselgel GF 254 plates (Merck) using benzene as eluant.

General Procedure for the Addition of Dithiocarbamic Acids 2a and 2b to 2-Arylidenecyclohexanones 1a-f

To a solution of 0.075 mol of ammonium salt of N-benzyl- (2 a), or N-(2-phenylethyl)-dithiocarbamic acid (2 b) dissolved in 150 ml of 50% methanol (cooled to -5° C), 35 ml of 6.5N hydrochloric acid (cooled to -5° C) was added dropwise while stirring. Cooling and stirring were continued, and 0.035 mol of unsaturated ketone 1 a-f in 200 ml acetone (cooled to -5° C) was added to the reaction mixture. After stirring at this temperature for 4 h, the precipitate formed was filtered off, washed free of acid with water, dried, and crystallized from benzene/petroleum ether to give colourless crystals.

Fig. 1. Conformation of compounds 5 and 6

2-(a-(N-Benzyl-thiocarbamoylthio)-benzyl)-cyclohexan-1-one (3 a)

Yield: 83%, m.p. 108–111°C. IR (KBr): $v = 3320 \text{ cm}^{-1}$ (NH), 2925, 2945 cm⁻¹ (CH₂), 1690 cm⁻¹ (C=O). C₂₁H₂₃NOS₂ (369.54). Calcd. C 68.26, H 6.27, S 17.35; found C 68.34, H 6.21, S 17.10.

2-(a-(N-Benzyl-thiocarbamoylthio)-4-methoxybenzyl)-cyclohexan-1-one (3b)

Yield: 81%, m.p. 106–109°C. IR (KBr): $v = 3.275 \text{ cm}^{-1}$ (NH), 2.930 cm⁻¹ (CH₂), 1.695 cm⁻¹ (C=O). C₂₂H₂₅NO₂S₂ (399.57). Calcd. C 66.13, H 6.31, S 16.05; found C 66.24, H 6.18, S 15.80.

2-(a-(N-Benzyl-thiocarbamoylthio)-4-methylbenzyl)-cyclohexan-1-one (3 c)

Yield: 78%, m.p. 100–104°C. IR (KBr): $v = 3.335 \text{ cm}^{-1}$ (NH), 2930, 2945 cm⁻¹ (CH₂), 1700 cm⁻¹ (C=O). C₂₂H₂₅NOS₂ (383.57). Calcd. C 68.89, H 6.57, S 16.72; found C 68.64, H 6.78, S 16.67.

2-(a-(N-Benzyl-thiocarbamoylthio)-4-chlorobenzyl)-cyclohexan-1-one (3d)

Yield: 73%, m.p. 110–113°C. IR (KBr): $v = 3\,300\,\text{cm}^{-1}(\text{NH})$, 2940 cm⁻¹ (CH₂), 1700 cm⁻¹ (C=O). C₂₁H₂₂ClNOS₂ (403.98). Calcd. C 62.44, H 5.49, S 15.87; found C 62.23, H 5.37, S 15.98.

2-(a-(N-Benzyl-thiocarbamoylthio)-3-methoxybenzyl)-cyclohexan-1-one (3e)

Yield: 85%, m.p. 103–105°C. IR (KBr): $v = 3.225 \text{ cm}^{-1}$ (NH), 2.940 cm⁻¹ (CH₂), 1.695 cm⁻¹ (C=O). C₂₂H₂₅NO₂S₂ (399.57). Calcd. C 66.13, H 6.31, S 16.05; found C 66.04, H 6.48, S 15.94.

2-(a-(N-Benzyl-thiocarbamoylthio)-4-bromobenzyl)-cyclohexan-1-one (3 f)

Yield: 86%, m.p. 116–118°C. IR (KBr): $v = 3.305 \text{ cm}^{-1}$ (NH), 2.935 cm^{-1} (CH₂), 1.700 cm^{-1} (C=O). C₂₁H₂₂BrNOS₂ (448.43). Calcd. C 56.25, H 4.94, S 14.30; found C 56.07, H 4.71, S 14.51.

2-(a-(N-(2-Phenylethyl)-thiocarbamoylthio)-benzyl)-cyclohexan-I-one (4 a)

Yield: 80%, m.p. 119–122°C. IR (KBr): $v = 3.355 \text{ cm}^{-1}$ (NH), 2945 cm⁻¹ (CH₂), 1690 cm⁻¹ (C=O). C₂₂H₂₅NOS₂ (383.57). Calcd. C 68.89, H 6.57, S 16.72; found C 68.72, H 6.64, S 16.90.

2-(a-(N-(2-Phenylethyl)-thiocarbamoylthio)-4-methoxybenzyl)-cyclohexan-1-one (4b)

Yield: 87%, m.p. 114–116°C. IR (KBr): $v = 3.355 \text{ cm}^{-1}(\text{NH})$, 2940 cm⁻¹ (CH₂), 1700 cm⁻¹ (C=O). C₂₃H₂₇NO₂S₂ (413.59). Calcd. C 66.79, H 6.58, S 15.50; found C 66.57, H 6.43, S 15.71.

2-(a-(N-(2-Phenylethyl)-thiocarbamoylthio)-4-methylbenzyl)-cyclohexan-1-one (4 c)

Yield: 85%, m.p. 126–128°C. IR (KBr): $v = 3.315 \text{ cm}^{-1}$ (NH), 2940 cm⁻¹ (CH₂), 1700 cm⁻¹ (C=O). C₂₃H₂₇NOS₂ (397.59). Calcd. C 69.48, H 6.84, S 16.13; found C 69.39, H 6.71, S 16.37.

 $2 - (a - (N - (2 - Phenylethyl) - thiocarbamoylthio) - 4 - chlorobenzyl) - cyclohexan - 1 - one (\mathbf{4d})$

Yield: 72%, m.p. 126–129°C. IR (KBr): $v = 3240 \text{ cm}^{-1}(\text{NH})$, 2930 cm⁻¹ (CH₂), 1700 cm⁻¹ (C=O). C₂₂H₂₄CINOS₂ (418.01). Calcd. C 63.21, H 5.79, S 15.34; found C 63.07, H 5.63, S 15.47.

4H-3,1-Benzothiazine-2(1H)-thiones

General Procedure for Dehydration of Compounds 3 and 4

To the suspension of compounds 3 and 4 (0.03 mol) in 80 ml acetic anhydride 0.5 ml conc. sulphuric acid was added dropwise with stirring. Stirring was continued for $\frac{1}{2}$ h. Then the mixture was cooled, the precipitate formed was filtered off, washed free of acid with water and dried. The product obtained was subjected to column chromatography (Merck, Kieselgel 60, 0.0063–0.2 mm; benzene) and crystallized from benzene/petroleum ether to give colourless crystals. For the ¹H-NMR spectra of compounds 5 a–f see Table 1, for the corresponding ¹³C-NMR see Table 2.

trans-N-Benzyl-4-phenyl-4a,5,6,7-tetrahydro-4H-3,1-benzothiazine-2(1H)-thione (5a)

Yield: 93%, m.p. 177–179°C. IR (KBr): v = 2910, 2920, 2945 cm⁻¹ (CH₂), 1655 cm⁻¹ (C=C), 1605, 1495 cm⁻¹ (C=C_{Ar}). C₂₁H₂₁NS₂ (351.52). Calcd. C 71.75, H 6.02, S 18.24; found C 71.68, H 5.93, S 18.14.

trans-N-Benzyl-4-(4-metoxyphenyl)-4a,5,6,7-tetrahydro-4H-3,1-benzothiazine-2(1H)-thione (5b)

Yield: 89%, m.p. 161–163°C. IR (KBr): v = 2910, 2925 cm^{-1} (CH₂), 1655 cm^{-1} (C=C), 1605, 1510 cm^{-1} (C=C_{Ar}). C₂₂H₂₃NOS₂ (381.55). Calcd. C 69.25, H 6.08, S 16.81; found C 70.05, H 6.19, S 16.68.

trans-N-Benzyl-4-(4-methylphenyl)-4a,5,6,7-tetrahydro-4H-3,1-benzothiazine-2(1H)-thione (5c)

Yield: 79%, m.p. 188–190°C. IR (KBr): v = 2910, 2925 cm^{-1} (CH₂), 1655 cm^{-1} (C=C), 1605, 1495 cm^{-1} (C=C_{Ar}). C₂₂H₂₃NS₂ (365.55). Calcd. C 72.29, H 6.34, S 17.54; found C 72.57, H 6.21, S 17.44.

trans-N-Benzyl-4-(4-chlorophenyl)-4a,5,6,7-tetrahydro-4H-3,1-benzothiazine-2(1H)-thione (5 d)

Yield: 84%, m.p.: 183–185°C. IR (KBr): $v = 2.940 \text{ cm}^{-1}$ (CH₂), 1.655 cm⁻¹ (C=C), 1.605, 1.490 cm⁻¹ (C=C_{Ar}). C₂₁H₂₀ClNS₂ (385.97). Calcd. C 65.35, H 5.22, S 16.61; found C 65.38, H 5.07, S 16.54.

trans-N-Benzyl-4-(3-methoxyphenyl)-4a,5,6,7-tetrahydro-4H-3,1-benzothiazine-2(1H)-thione (5e)

Yield: 89%, m.p. 164–166°C. IR (KBr): $v = 2910, 2930, 2945 \text{ cm}^{-1}$ (CH₂), 1655 cm⁻¹ (C=C), 1605, 1585 cm⁻¹ (C=C_{Ar}). C₂₂H₂₃NOS₂ (381.55). Calcd. C 69.25, H 6.08, S 16.81; found C 69.41, H 5.83, S 16.64.

trans-N-Benzyl-4-(4-bromophenyl)-4a,5,6,7-tetrahydro-4H-3,1-benzothiazine-2(1H)-thione (5f)

Yield: 87%, m.p. 164–166°C. IR (KBr): v = 2915, 2930, 2945 cm⁻¹ (CH₂), 1655 cm⁻¹ (C=C), 1590, 1485 cm⁻¹ (C=C_{Ar}). C₂₁H₂₀BrNS₂ (430.42). Calcd. C 58.60, H 4.68, S 14.90; found C 58.42, H 4.79, S 15.01.

trans-N-(2-Phenylethyl)4-phenyl-4a,5,6,7-tetrahydro-4H-3,1-benzothiazine-2(1H)-thione (6a)

Yield: 91%, m.p. 175–177°C. IR (KBr): $v = 2.940 \text{ cm}^{-1}$ (CH₂), 1655 cm⁻¹ (C=C), 1600, 1495 cm⁻¹ (C=C_{4r}). C₂₂H₂₃NS₂ (365.55). Calcd. C 72.29, H 6.34, S 17.54; found C 71.97, H 6.41, S 17.64.

trans-N-(2-Phenylethyl)4-(4-methoxyphenyl)-4a,5,6,7-tetrahydro-4H-3,1-benzothiazine-2(1H)-thione (6b)

Yield: 89%, m.p. 171–173°C. IR (KBr): $v = 2.945 \text{ cm}^{-1}$ (CH₂), 1640 cm⁻¹ (C=C), 1610, 1510 cm⁻¹ (C=C_{Ar}). C₂₃H₂₅NOS₂ (395.58). Calcd. C 69.83, H 6.37, S 16.21; found C 70.04, H 6.19, S 16.37.

trans-N-(2-Phenylethyl)4-(4-methylphenyl)-4a,5,6,7-tetrahydro-4H-3,1-benzothiazine-2(1H)-thione (6 c)

Yield: 81%, m.p. 197–199°C. IR (KBr): $v = 2.940 \text{ cm}^{-1}$ (CH₂), 1 640 cm⁻¹ (C=C), 1 605, 1 515 cm⁻¹ (C=C_{Ar}). C₂₃H₂₅NS₂ (379.58). Calcd. C 72.78, H 6.64, S 16.89; found C 72.64, H 6.81, S 17.03.

trans-N-(2-Phenylethyl)4-(4-chlorophenyl)-4a,5,6,7-tetrahydro-4H-3,1-benzothiazine-2(1H)-thione (6 d)

Yield: 87%, m.p. 197–199°C. IR (KBr): v = 2910, 2930 cm^{-1} (CH₂), 1650 cm^{-1} (C=C), 1600, 1490 cm^{-1} (C=C_{Ar}). C₂₂H₂₂ClNS₂ (400.00). Calcd. C 66.06, H 5.54, S 16.03; found C 65.83, H 5.78, S 16.14.

Acknowledgement

The present study was supported by the EGIS Pharmaceutical (Budapest, Hungary), and the Hungarian Ministry of Health for which our gratitude is expressed.

References

- [1] Hoffmann-La Roche and Co., AG.: a) (1966) Neth. Appl. 6,604,470; (1967) C.A. 66: 37971;
 b) (1967) Brit. 1,077,272; (1968) C.A. 68: 69061; c) Hoffmann-La Roche Inc. (Wenner W., Uskokovic W. R., Inv.) (1969) U.S. 3,463,774; (1970) C.A. 72: 67005
- [2] Fujisawa Pharmaceutical Co., Ltd. (Umio S., Kariyone K., Kishimoto T., Inv.): a) (1969) Japan 69 27,033; (1970) C.A. 72: 31823; b) (1969) Japan 69 27,032; (1970) C.A. 72: 79068; c) (1970) Japan 70 15,030; (1970) C.A. 73: 45525
- [3] Farbwerke Hoechst AG. (Kuch H., Schmitt K., Seidl G., Hoffmann I., Inv.): (1968) S. African 67 06,886; (1969) C.A. 70: 87829
- [4] Farbwerke Hoechst A.G. (1969) Fr. M. 7359; (1971) C.A. 75: 151817
- [5] Farbwerke Hoechst A.G. (1966) Neth. Appl. 6,607,386; (1968) C.A. 68: 21941
- [6] Allen and Hanburys Ltd. (Ritchie A. C., Haddock R. E., Inv.): (1968) S. African 67 07,433; (1969) C.A. 70: 87828
- [7] Morton-Norwich Products, Inc. (Pelosi S. S., Jr., Inv.): a) (1977) U.S. 4,002,620; (1977) C.A.
 86: 140074; b) (1977) U.S. 4,002,621; (1977) C.A.
 86: 140075; c) (1977) U.S. 4,002,622; (1977) C.A.
 86: 140076
- [8] Bayer AG (Buettner G., Klauke E., Kaspers H., Frohberger P. E., Inv.): (1973) Ger. Offen. 2,218,301; (1974) C.A. 80: 14937
- [9] Perjési P., Földesi A., Batta Gy., Tamás J. (1989) Chem. Ber. 122: 651
- [10] The compounds are racemates. Only one enantiomer is shown in the Scheme
- [11] Karplus M.: a) (1959) J. Chem Phys. 30: 11; b) (1960) J. Chem. Phys. 33: 1842
- [12] Adams R. (1968) Org. React., Vol. 16. Wiley, New York
- [13] Thorn G. D., Ludwig R. A. (1962) The Dithiocarbamates and Related Compounds. Elsevier, New York
- [14] Hassner A., Mead T. C. (1964) Tetrahedron 20: 2201

Received February 26, 1991. Accepted March 22, 1991